If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying -4k2 + -8k = 3 + -1k2 Reorder the terms: -8k + -4k2 = 3 + -1k2 Solving -8k + -4k2 = 3 + -1k2 Solving for variable 'k'. Reorder the terms: -3 + -8k + -4k2 + k2 = 3 + -1k2 + -3 + k2 Combine like terms: -4k2 + k2 = -3k2 -3 + -8k + -3k2 = 3 + -1k2 + -3 + k2 Reorder the terms: -3 + -8k + -3k2 = 3 + -3 + -1k2 + k2 Combine like terms: 3 + -3 = 0 -3 + -8k + -3k2 = 0 + -1k2 + k2 -3 + -8k + -3k2 = -1k2 + k2 Combine like terms: -1k2 + k2 = 0 -3 + -8k + -3k2 = 0 Factor out the Greatest Common Factor (GCF), '-1'. -1(3 + 8k + 3k2) = 0 Ignore the factor -1.Subproblem 1
Set the factor '(3 + 8k + 3k2)' equal to zero and attempt to solve: Simplifying 3 + 8k + 3k2 = 0 Solving 3 + 8k + 3k2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 1 + 2.666666667k + k2 = 0 Move the constant term to the right: Add '-1' to each side of the equation. 1 + 2.666666667k + -1 + k2 = 0 + -1 Reorder the terms: 1 + -1 + 2.666666667k + k2 = 0 + -1 Combine like terms: 1 + -1 = 0 0 + 2.666666667k + k2 = 0 + -1 2.666666667k + k2 = 0 + -1 Combine like terms: 0 + -1 = -1 2.666666667k + k2 = -1 The k term is 2.666666667k. Take half its coefficient (1.333333334). Square it (1.777777780) and add it to both sides. Add '1.777777780' to each side of the equation. 2.666666667k + 1.777777780 + k2 = -1 + 1.777777780 Reorder the terms: 1.777777780 + 2.666666667k + k2 = -1 + 1.777777780 Combine like terms: -1 + 1.777777780 = 0.77777778 1.777777780 + 2.666666667k + k2 = 0.77777778 Factor a perfect square on the left side: (k + 1.333333334)(k + 1.333333334) = 0.77777778 Calculate the square root of the right side: 0.881917105 Break this problem into two subproblems by setting (k + 1.333333334) equal to 0.881917105 and -0.881917105.Subproblem 1
k + 1.333333334 = 0.881917105 Simplifying k + 1.333333334 = 0.881917105 Reorder the terms: 1.333333334 + k = 0.881917105 Solving 1.333333334 + k = 0.881917105 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-1.333333334' to each side of the equation. 1.333333334 + -1.333333334 + k = 0.881917105 + -1.333333334 Combine like terms: 1.333333334 + -1.333333334 = 0.000000000 0.000000000 + k = 0.881917105 + -1.333333334 k = 0.881917105 + -1.333333334 Combine like terms: 0.881917105 + -1.333333334 = -0.451416229 k = -0.451416229 Simplifying k = -0.451416229Subproblem 2
k + 1.333333334 = -0.881917105 Simplifying k + 1.333333334 = -0.881917105 Reorder the terms: 1.333333334 + k = -0.881917105 Solving 1.333333334 + k = -0.881917105 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-1.333333334' to each side of the equation. 1.333333334 + -1.333333334 + k = -0.881917105 + -1.333333334 Combine like terms: 1.333333334 + -1.333333334 = 0.000000000 0.000000000 + k = -0.881917105 + -1.333333334 k = -0.881917105 + -1.333333334 Combine like terms: -0.881917105 + -1.333333334 = -2.215250439 k = -2.215250439 Simplifying k = -2.215250439Solution
The solution to the problem is based on the solutions from the subproblems. k = {-0.451416229, -2.215250439}Solution
k = {-0.451416229, -2.215250439}
| 5(y-10)=15 | | 5x-12=3x-12 | | (a^3b^6)(a^2b^2)= | | g(x)=(5)2x-3 | | 9(14-t)=-17 | | -32/-1.8 | | -2x^1+1=0 | | 3/5+3/10x=4/5+2/5x | | 12x-8+3x-5=11x-3+3x | | -12/-6 | | f(x)=log(3)(5x) | | 2(3x-3)-2(3-3z)=2 | | 2+3/a-3=a/a-3 | | 2=a/-6 | | 2/5x+14=4/5x-6 | | 14+2x=-8-3x | | 2=8x-30 | | -8(n+3)+26=-5n-10 | | 2-6(1-9h)=8h+42 | | 18=v/-1.8 | | 4(n-8)=3+5n | | x^2+2/3x-5/9=0 | | 6(-3-x)=12 | | h-6+7h=43 | | 8m-12n=32 | | 6(m-2)=5(-m+5)+2(3-2m)+2 | | -0.33/-6 | | x+23+3x=-29-3x-32 | | 6/10=9x | | -3(2m+1)+2(m-8)=3(m-4) | | 3y^2+2y+3=0 | | 2m+12n=-22 |